1,694 research outputs found

    Electronics systems test laboratory testing of shuttle communications systems

    Get PDF
    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail

    Models of helically symmetric binary systems

    Full text link
    Results from helically symmetric scalar field models and first results from a convergent helically symmetric binary neutron star code are reported here; these are models stationary in the rotating frame of a source with constant angular velocity omega. In the scalar field models and the neutron star code, helical symmetry leads to a system of mixed elliptic-hyperbolic character. The scalar field models involve nonlinear terms that mimic nonlinear terms of the Einstein equation. Convergence is strikingly different for different signs of each nonlinear term; it is typically insensitive to the iterative method used; and it improves with an outer boundary in the near zone. In the neutron star code, one has no control on the sign of the source, and convergence has been achieved only for an outer boundary less than approximately 1 wavelength from the source or for a code that imposes helical symmetry only inside a near zone of that size. The inaccuracy of helically symmetric solutions with appropriate boundary conditions should be comparable to the inaccuracy of a waveless formalism that neglects gravitational waves; and the (near zone) solutions we obtain for waveless and helically symmetric BNS codes with the same boundary conditions nearly coincide.Comment: 19 pages, 7 figures. Expanded version of article to be published in Class. Quantum Grav. special issue on Numerical Relativit

    Effects of Filter Strips on Habitat Use and Home Range of Northern Bobwhites on Alligator River National Wildlife Refuge

    Get PDF
    Lack of breeding habitat for northern bobwhites (Colinus virginianus) on agricultural landscapes is a factor that limits populations. Therefore, we examined how the addition of filter strips around crop fields and along crop field drainage ditches impacted northern bobwhites. Our study focused on habitat use, home range and brood-rearing range of bobwhites, from April through September I 993-94. Two farms on Alligator River National Wildlife Refuge were sub-divided into filter strip (FS) and non-filter strip (NFS) sections. More bobwhites were found on FS sections than on NFS sections based on flush counts (4.3x more on FS areas: P = 0.02). We used log-linear analysis to examine the distribution of telemetry locations (n = 1796) of radio-marked bobwhites (n = 218) across 5, 4.6m bands parallel to drainage ditches. Bobwhite locations were skewed towards ditches, particularly on FS sections before soybeans matured to a size that was sufficient to provide canopy cover for bobwhites. Bobwhites captured on FS sections had significantly smaller breeding season ranges than those captured on NFS sections (P = 0.001). Adult and sub-adult breeding season (May-Aug) ranges (n = 23) averaged 32 ha (SE = 26) and 182 ha (SE = 41) on FS and NFS sections, respectively. Brood ranges to 14 days (n = 9) ranged from 0.8 ha to 2.2 ha depending on habitat and calculation method. Presence of filter strips shifted habitat use patterns, especially during spring and early summer, and improved crop fields as habitat for breeding bobwhites

    Elucidation of the bonding of a near infrared dye to hollow gold nanospheres : a chalcogen tripod

    Get PDF
    Infrared surface enhanced Raman scattering (SERS) is an attractive technique for the in situ detection of nanoprobes in biological samples due to the greater depth of penetration and reduced interference compared to SERS in the visible region. A key challenge is to understand the surface layer formed in suspension when a specific label is added to the SERS substrate in aqueous suspension. SERS taken at different wavelengths, theoretical calculations, and surface-selective sum frequency generation vibrational spectroscopy (SFG-VS) were used to define the surface orientation and manner of attachment of a new class of infrared SERS label with a thiopyrylium core and four pendant 2-selenophenyl rings. Hollow gold nanospheres (HGNs) were used as the enhancing substrate and two distinct types of SERS spectra were obtained. With excitation close to resonance with both the near infrared electronic transition in the label (max 826 nm) and the plasmon resonance maximum (690 nm), surface enhanced resonance Raman scattering (SERRS) was obtained. SERRS indicates that the major axis of the core is near to perpendicular to the surface plane and SFG-VS obtained from a dried gold film gave a similar orientation with the major axis at an angle 64°-85° from the surface plane. Longer excitation wavelengths give SERS with little or no molecular resonance contribution and new vibrations appeared with significant displacements between the thiopyrylium core and the pendant selenophene rings. Analysis using calculated spectra with one or two rings rotated indicates that two rings on one end are rotated towards the metal surface to give an arrangement of two selenium and one sulphur atoms directly facing the gold structure. The spectra, together with a space filled model, indicate that the molecule is strongly adsorbed to the surface through the selenium and sulphur atoms in an arrangement which will facilitate layer formation

    Anomalous Lattice Vibrations of Single and Few-Layer MoS2

    Full text link
    Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy. Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.Comment: 14 pages, 4 figure

    Social physique anxiety and physical activity in early adolescent girls : the influence of maturation and physical activity motives

    Get PDF
    This study considered the influence of maturation on social physique anxiety (SPA), the relationship between SPA and current and future physical activity (PA) levels and the influence of motives for physical activity on this relationship in early adolescent girls (n=162; mean age=11.80±0.33 years). Participants completed the Pubertal Development Scale, the modified Social Physique Anxiety Scale and the Motives for Physical Activity Scale at baseline and the Physical Activity Questionnaire for Older Children at baseline and 6 months later. The girls became less active across the 6 months and girls in the early stages of maturation had significantly lower SPA than the girls in the middle and late stages of maturation. SPA was not related to current or future physical activity in the sample as a whole. Cluster analysis identified four groups with different motive profiles and the High Appearance and Fitness group demonstrated a moderate negative relationship between SPA and PA at phase 1, whereas the other groups did not. These findings indicate that SPA may increase with maturation and the relationship between SPA and PA is dependent on reasons for being active. For girls who are motivated to be active primarily by body-related reasons SPA is likely to lead to lower levels of PA

    Configuration-interaction calculations of positron binding to group-II elements

    Get PDF
    The configuration-interaction (CI) method is applied to the study of positronic magnesium (e+Mg), positronic calcium (e+Ca), and positronic strontium (e+Sr). The CI expansion was seen to converge slowly with respect to Lmax, the maximum angular momentum of any orbital used to construct the CI basis. Despite doing explicit calculations with Lmax=10, extrapolation corrections to the binding energies for the Lmax→∞ limit were substantial in the case of e+Ca (25%) and e+Sr (50%). The extrapolated binding energies were 0.0162 hartree for e+Mg, 0.0165 hartree for e+Ca, and 0.0101 hartree for e+Sr. The static-dipole polarizabilities for the neutral parent atoms were computed as a by-product, giving 71.7a03, 162a03, and 204a03 for Mg, Ca, and Sr, respectively
    corecore